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Application of the Diffraction Trace Formula to 
the Three-Disk Scattering System 
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Tile diffraction trace formula derived previously and the spectral determinant 
are tested on the open three-disk scattering system. The system contains a 
generic and exponentially growing number of diffraction periodic orbits. In spite 
of this it is shown that even the scattering resonances with large imaginary part 
can be reproduced semiclassically. The nontrivial interplay of the diffraction 
periodic orbits with the usual geometrical orbits produces the fine structure of 
the complicated spectrum of scattering resonances, which are beyond the resolu- 
tion of the conventional periodic orbit theory. 
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1. I N T R O D U C T I O N  

Gutzwiller's trace formula ~11 is an increasingly popular tool for analyzing 
semiclassical behavior. Recently, it has been demonstrated that using 
proper mathematical apparatus, such as the spectral determinant of 
Voros, 12~ cycle expansions, 13~ or quantum Fredholm determinants, 141 the 
trace formula can successfully predict individual eigenenergies of bound 
systems and resonances of open scattering systems. The physical content of 
the trace formula is the geometrical optical approximation of quantum 
mechanics via canonical invariants of closed classical orbits. This approxi- 
mation is very accurate when periodic orbits sufficiently cover the phase 
space of the chaotic system. This is not the case when the number of 
obstacles is smhll or their distance is large compared to their typical size. 
Such a problem occurs where the wavelength of a quantum mechanical (or 
optical) wave is very large compared to the spatial variation of a repulsive 
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potential, e.g., at the boundaries of microwave guides, optical fibers, super- 
conducting SQUIDS, or circuits in the ballistic electron transport, i.e., in 
most of the devices used for so-called mesoscopic physics. In such cases it 
is important to take into account the next-to-geometrical effects. In ref. 5 
we showed how the geometric theory of diffraction (GTD) for hard-core 
potentials can be incorporated into the periodic orbit theory. We worked 
out the two-disk scattering system as an example, where diffraction plays 
an important role. Since the realization of the importance of such effects, 
diffraction periods have been uncovered in rhomboid billiards, ~6~ billiards 
with magnetic flux lines, ~71 and in a limiting case of the hyperbola 
billiard. ~8~ In the present example we study for the first time a generic 
example where exponentially many diffractive and geometrical orbits inter- 
play and build up a complicated spectrum of scattering resonances. For the 
reader unfamiliar with the diffraction trace formula we start by a brief 
sketch of its derivation. For a more detained and completely outlined intro- 
duction to the theory we refer the reader to ref. 9. 

2. DIFFRACTION PERIODIC ORBITS 

As is well known, the free-particle Green function G(x, y; E) can be 
exactly described in terms of geometrical optics by the path that connects 
x with y at energy E. If a smooth potential is introduced, we have to 
respond with a refractive index and if hard walls are present, we have to 
deal with diffractive rays to keep the description in the spirit of geometrical 
optics. The diffractive rays connecting two points in the configuration space 
can be derived from an extension of Fermat's variational principle of 
classical mechanics: Each path connecting x with 3' has a whole class of 
topologically equivalent paths which can all be continuously deformed into 
each other without changing the number of encounters with the hard-wall 
singularities of the system. The generalized Fermat principle then states 
that for each such class F only the rays of stationary optical length among 
all the curves in F contribute to the final field. The total field will then be 
the sum of contributions from such paths with diffractive segments, over all 
the topologicaly different classes of paths connecting x with y. 

Once we know the generalized ray connecting two points ~ / a n d  ~ ,  
we can compute semiclassicaly the Green function G(q.~/, q~, E) by tracing 
the ray: I to~ 

a. On the geometrical segments of the ray, the Green function is 
given by the energy-domain Van Vleck propagator 

2h)3/zDij/,~( q [i i ]  G(q,q',E)-(2--~,, - ,q',E) exp ~S(q,q',E)-~vrc (1) 
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where 

Dr( q, q', E) = Idet(-02S/Oq, O q j ) l / I 4 1  �9 14'1 

is the Van Vleck determinant and v is the Maslov index (see ref. 11 for 
details). 

b. When the geometrical ray hits a surface, an edge, or a vertex of the 
obstacle it creates a source for the diffracted wave. The strength of the 
source is proportional to the Green function at the incidence of the ray 

O d i n  . =  D G i n c i  (2) 

The diffraction constant D depends on the local geometry of the obstacle, 
the wave-type, and the nature of the diffraction. It has been determined in 
ref. 10 from the asymptotic semiclassical expansion of the exact solution in 
a simple geometry, namely the scattering from a single disk. (1~ 121 For  the 
surface diffraction (creeping) it has the form 

DI = 2 1 / 3 3  - 2~3Ice 5in/l 2 (kp) l /6  ( 3 )  

Ai'(xt) 

Here Ai'(x) is the derivative of the Airy integral Ai(x) = ~ dt cos(xt - t3), 
k=(2mE)l/Z/l~ is the wave number, p is the radius of the obstacle at the 
source of the creeping ray, and x~ are the zeros of the Airy integral. The 
index //> 1 refers to the possibility of initiating creeping rays with different 
modes, each with its own profile. In practice, only the low modes 
contribute to the Green function. For wedge diffraction the diffraction 
constant is 

Dwedge - -  - -  
sin (re/n) F 1 

n [ cos(~/n)- cos[ ( 0 -  00/n)] 

1 ] 
cos  (n /n )  - cos  [ (0  + ~ + n ) / n ]  

(4) 

where (2 -n ) ' r t  is the angle of the wedge (17 is a real number), e is the 
incident angle, and 0 is the outgoing angle. For  details we refer to ref. 10. 
In the three-disk scatterer the wedge diffraction is only important when the 
system is closed, and we shall therefore not go deeper into the subject here. 

The source created by the incident ray then initiates a new ray 
propagating along the surface (for creeping) or a free ray starting at the 
edge of the obstacle (wedge diffraction). 

822/83/I-2-17 
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During the creeping of the ray the amplitude decreases, which can be 
understood as a process analogous to the radiation processes of 
electrodynamics. The radiated intensity is proportional to the intensity of 
the ray 

d 
-~s Al(s" E)-'= -2~/(s, E) Al(s, E) 2 (5) 

where s is the length measured along the surface and A~(s, E) is the 
complex amplitude of the Green function along the surface. The coefficient 
e~(s, E) depends on the local curvature of the surface, Up(s), and it has the 
structure c~t(s,E)=xle-i~/6[k/6p(s)2] I/3 (see ref. 13), where the index l 
refers again to the different modes of the creeping wave. The Green 
function for the creeping ray of mode l is then given by 

[' ] G~(q.~r q~,, E) = exp - ds ~,(s, E)] exp ~ S(q.~,,, q~,, E) (6) 

where L is the length of the arc of the creeping ray, and S(q.~j,, q.~,, E) is 
the action along it. 

When the creeping ray leaves the surface its intensity can be calculated 
from the relation (2) due to the reversibility of the Green function. The 
total Green function is then the product of the Green functions and diffrac- 
tion coefficients along the ray. If, for example, we have geometrical 
propagation from ~'  to ~"followed by surface creeping from d '  to ~ '  and 
then again a geometrical propagation from ~ '  to ~,  the total semiclassical 
Green function is 

G(q.~./,q.~)=G(q.~,,q.~/,)D.~/,GC"(q.~,,,q~,)Dz~,G(q~,,q~) (7) 

Corrections to this formula result from h contributions to the geometrical 
legs and polynomial Airy corrections to the creeping arcs. In case we have 
geometrical propagation from ~'  to d '  followed by a wedge diffraction 
and finally again a geometrical propagation from ~"  to M, the total semi- 
classical Green function reads 

G(q.~,, g ~ ) =  G(q.~/, q.~/,) Dwedg~G(q.~,,, q ~ ) (8) 

Contrary to the pure geometrical case, the semiclassical energy- 
domain Green function for rays with diffraction arcs or wedge diffraction 
thus has a multiplicative composition law. 
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When we incorporate diffraction effects into the trace formula, 
periodic rays with diffraction segments also contribute. We can handle 
separately the pure geometric cycles and the cycles with at least one 
diffraction arc or wedge: 

Tr G( E) ,.~ Tr G G( E) + Tr Go(E) (9) 

where Tr Ga(E) is the ordinary Gutzwiller trace formula, while Tr Go(E) 
is the new trace formula corresponding to the nontrivial cycles of the GTD. 
The Gutzwiller trace formula for two-dimensional billiards is 

T r G c ( E ) = ~  ~ Tp(E)exp[irS:(E)-irvpn/2] 
, ,.=, IA,I,/-----~- ( ~ S  1/A~----) (lO) 

where Tp(E) is the time, Sp(E) is the classical action, vp is the Maslov 
index, and Ap is the stability eigenvalue of the primitive periodic orbit. The 
summation goes for all primitive periodic orbits of the system p and their 
repetitions r. The TrGo(E) can be computed by using appropriate Watson 
contour integralsJ ~2~ For technical details we refer the reader to refs. 12 
and 14. If we denote by qi, i = 1 ..... np (with q,,p+~ = qi), the points along the 
closed cycle where the ray changes from diffraction to pure geometric 
evolution or vice versa or where the ray encounters a wedge diffraction, the 
trace for cycles with at least one diffraction arc can be expressed as the 
product 

np 

Tr Go(E) = g 2 ~ Tp(E) I-I [D(q,) G(q, q,+,,  E l i  r 
p r ~ l  i = l  

(11) 

where Tp(E) is the time period of the primitive cycle and D(qi) is the 
diffraction constant (3) or (4) at the point q,.. Here G(qg, q~+ ~, E) is either 
the Van Vleck propagator if q; and q;+~ are connected by pure geometric 
arcs or is given by the creeping propagator (6) in case q~ and q~+ ~ are the 
boundary points of a creeping arc. 

3. T H E  T H R ~ E - D I S K  S Y S T E M  

To investigate the theory sketched above, we apply it to the three-disk 
scattering system. The three-disk system has in recent years been subjected 
to a large number of investigations, and its main virtues are well known. 
Here, we recall some of the basic properties of the system. 

The system consists of three identical disks placed symmetrically 
around the origin in a plane (see Fig. 1), and is completely determined by 
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Fig. 1. The full three-disk system with a copy of the fundamental domain. Representatives of 
the creeping orbits of topological length I are displayed in full space as well in the fundamen- 
tal one. 

a single parameter, namely the ratio R : a  of the separation of the disks to 
their radius. In our calculations we have kept this ratio fixed at R : a  = 6. 

The system thus possesses a threefold rotational symmetry around the 
origin and has three reflection symmetries around the symmetry lines 
through the center. The system is therefore invariant under the point group 
C3v; instead of considering the system as a whole, we can restrict ourselves 
to the fundamenta l  domain. ~ 15~ The fundamental domain exactly covers the 
whole system when the elements of the point group are applyed to it. The 
three-disk system and a version of the fundamental domain are shown in 
Fig. 1. For sufficiently large spacing of the disks ~17~ the system has a 
complete binary symbolic dynamics. All the periodic orbits can be 
described in terms of the alphabet { 0, 1 }, where 0 corresponds to a bounce 
under which the particle returns to its starting disk and 1 corresponds to 
the bounces where the particle continues to the next disk. In the fundamen- 
tal domain there are therefore two fixpoints 1 and 0 corresponding to a 
triangular and back-and-forward bouncing orbit in the full space. All the 
geometrical orbits can be found via a minimization of the path lengths. If 
one needs a periodic orbit following a definite sequence of n disk bounces, 
one just has to determine the length as a function of the n bouncing 
positions and then to minimize this length. That this indeed gives the right 
periodic orbit follows from geometrical optics and Fermat's principle: when 
the light (the particle) follows the shortest path (of a given symbolic 
sequence), it will at the same time obey the reflection law. 
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The surface of  the disk in the fundamental  domain  can be used as a 
Poincar6 surface of  section. Establishing the bouncing  map  as in ref. 18, we 
can thus calculate the stabilities of  the cycles. Fol lowing the outlined 
scheme, we arrive at the results displayed in Table I. 

A more  detailed description of  the three-disk system and the methods  
described in this section can be found in, e.g., ref. 18. 

In order  to apply the G T D  to the calculation of  semiclassical resonan- 
ces, we also have to account  for the diffraction (creeping) orbits of  the 
system. To  give an overview of  the work  to be done, we start by count ing 
the number  of  periodic creeping orbits to be evaluated. Because of  the 
symmetry  of  the system we can assume that the creeping orbit  always starts 
tangentially from the (half-) disk in the fundamental  domain  which we 
label disk number  1. Considering first an orbit  with no geometrical 
bounces, we see that  it has two different disks to go to, and for each each 
disk two different sides to creep in. This makes a total of  four diffraction 
orbits of  topological  length 1. When  these are folded back into the 
fundamental  domain  we see that two of  them are self-retracing. The two 
other  orbits are tracing the same orbit, but  in opposite directions. If  we 

Table I. Geometrical Cycle Data for the 
Three-Disk System with R : a =  6 ~ 

P A e L~e/a 

0 9.898979 4.000000 
1 -11.771455 4.267949 

10 -124.094801 8.316529 
100 -1240.542557 12.321746 
101 1449.545074 12.580807 

1 0 0 0  -12295 .706861  16.322276 
1 0 0 1  14459.975919 16.585242 
1011  -17079.019008 16.849071 

10000 -121733.838705 20.322330 
10001 143282.095154 20.585689 
1 0 0 1 0  153925.790742 20.638238 
10011 -170410.715542 20.853571 
10101 -179901.947942 20.897369 
10111 201024.734743 21.116994 

The first column indicates the symbolic dynamics of 
the periodic orbit, and the second and third column 
gives the stability calculated from the Jacobian of the 
bouncing map and the length of the cycle in the 
fundamental domain, respectively. 
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consider paths of the particle with m bounces, we see that there will be 
2" + ~ = 2"  + 2 periodic creeping orbits of topological order n, as for each one 
of the m bounces the particle can choose between two disks. Thus the 
number of periodic creeping orbits grows exponentially fast with the 
topological length n of the orbit. It is quite astonishing, however, as we will 
see later, how few of these orbits are in fact needed to get a good descrip- 
tion of the scattering resonances (including the ones with large imaginary 
parts). The creeping orbits can be described completely by their itinerary 
lc~1 so_... ~,,, where the ~ are taken from the alphabet { 1, 2, 3} and where 
we do not allow the repeats -.. 11 ... 22 . - . ,  and --- 3 3 . . . .  This description 
contains a double degeneracy due to the fact that the orbit has the choice 
to creep around the final disk clockwise or anticlockwise. For  instance, 123 
can represent two different orbits which start from disk 1 in the fundamen- 
tal domain, then hit disk number 2, and finally creep around the final disk 
(3) clockwise or anticlockwise. 

The restriction that the creeping periodic orbits should start and end 
tangentially on one of the disks simplifies the search procedure for them 
considerably: whereas in the case of geometrical n-bounce cycles one had 
to minimize a function of n bouncing parameters, we here only have one 
parameter  in play, namely the angle where the creeping orbit leaves the 
initial disk. Suppose now that we want a specific creeping orbit described 
by a series of disk bounces plus the specification of the final creeping 
domain as above. We then scan through all the angles that leave the first 
disk in the fundamental domain. This gives us an interval of angles where 
the first wanted disk is being hit. We then scan this interval for bounces on 
the next disk in tire itinerary axed so on. Finally, we scan the last obtained 
interval to find the angle under which the ray creeps into the wanted side 
of the final disk. 

4. CYCLE EXPANSION OF THE SPECTRAL DETERMINANT 

Having established the data material for the three-disk system as 
described above, we now report on the more technical part  of the actual 
calculation. 

The resonances can be recovered from the Gutzwiller-Voros spectral 
determinant A(E), ~'-~ which is related to the trace formula as 

Tr  G(E)=~Eln A(E) (12) 

The full semiclassical determinant can be written as the formal product of 
two spectral determinants, one corresponding to the pure geometrical, and 
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one to the new diffractional cycles: zJ(E)=Ac(E)AD(E) ,  due to the 
additivity of the traces. The product is only formal since the eigenenergies 
are not given by the zeros of J~(E)  or Ao(E) individually, but have to be 
calculated from a curvature expansion of the combined determinant A(E) 
itself. 

The geometrical part of the spectral determinant is given by 

At(E) =exp ( -  ~ ~ 1 exp[ i rXp(E)- i rv jc /2] )  
t, ,'=, r IA'pI'/2(1-1/Aj;) (13) 

where the summations are over closed primitive (nonrepeating) cycles p 
and their repetitions r. The diffraction part of the spectral determinant is 

( ? ) Jo(E)  =exp - - [D(q~') G(q~, qP+,, E)]" (14) 
t - = I F / =  

where the summations are over closed primitive (nonrepeating) cycles p 
and their repetitions r. The product of Green functions should be evaluated 
for q~ belonging to the primitive cycle p. After summation over r, the 
spectral determinant can be written as 

AD(E) = l-I ( 1 - t p )  (15) 
P 

with 

tip 

tp = 1--[ D(qf) G(q~', qf+l, E) (16) 
i = l  

where qf belongs to the primitive cycle p. Here the mode numbers l of the 
diffraction constants and the corresponding summations have been 
supressed for notational simplicity. 

We can conclude that the diffractional part Ao(E) of the spectral 
determinant shares some nice features of the periodic orbit expansion of the 
dynamical zeta functions, 116~ and it can be expanded as 

Ao(E) = 1 --~, tp+ ~. tptp . . . . .  (17) 
p p .p '  

The weight (16) has the following property, which helps in radically 
reducing the number of relevant contributions to the expansion: If two 
different cycles p and p' have at least one common piece in their diffraction 
arcs, then the two cycles--to leading order l = 1---can be combined, to one 
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longer cycle p +p '  and the weight corresponding to this longer cycle is the 
product of the weights of the short cycles 

tp+p, = tp. tp, (18) 

As a consequence, the product of primitive cycles which have at least one 
common piece in their diffraction arcs can be reduced in such a way that 
the composite cycles are exactly cancelled in the curvature expansion 

I-] (1 - t p ) =  1 - ~  tb (19) 
p b 

where t b are basic primitive orbits which cannot be composed from shorter 
primitive orbits. In the case of the desymmetrized three-disk scatterer this 
applies to all the orbits, and we thus get a zeta function exactly of the form 
(19), where the sum is over all the prime periodic creeping orbits. 

To get the free-flight part of AD(E) we first consider the semiclassical 
Green function in free space. This is asymptotically (kR > 1 ) given as 

i ( 2 ~ ~/2 eikn -- i ( / r /4)  (20) Go(q, q', E)= --~ \~-~-~/ 

where R = [q -q ' ] .  If the ray connecting q and q' is reflected once or more 
from the curved hard walls before hitting tangentially one of the surfaces, 
we can keep track of the change in the amplitude by the help of the 
Sinai-Bunimovich curvatures. For a free flight the Sinai-Bunimovich 
curvature is just the inverse of the traveled distance 

1 
= -  (21) 

r 

When a hard wall is encountered tine curvature changes discontinuously as 

2 c  
a:+ = K _  + - -  (22) 

C O S  

where h'• are the Sinai-Bunimovich curvatures right after and before the 
bounce against the wall and c is the curvature of the reflecting surface at 
the point of incidence, whereas ~b is the angle of incidence. 

By computing the curvatures x i right after the reflections and knowing 
the distances l,. between the ith and the (i + 1 )th points of reflections, we 
has to change the factor R in the Green function (20) to the effective radius 

eft" m R =loF[~=l (1 +l;xA where lo, is the distance between q and the first 
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point of reflection along the ray as measured from q, and m is the number 
of reflections from the hard potential walls. The effective radius R~, fr, the 
length of the geometrical arc L~, and the length of the diffraction part L~ 
of the first twelve orbits with creeping sections are listed in Table II. To 
each cycle in the list, there is a whole sequence of cycles which wind around 
the disk m,.- times. For these orbits one has to add 2tram w to the diffrac- 
tion length L~. The diffraction part of the spectral determinant is finally 
given by 

a 1/3 exp(ig/12) e x p [ i k ( L ~  + LZ~) - o t ,L~]  
A o(  k ) = 1 --  ~ .  ( - -  1 )"" Ci  kl/6(R~lr) 1/_, 

b 

1 t= (23)  
• 1 - e x p [ 2 n ( i k - o ~ l ) a  ] i 

where C l = ~ 3 / 2 3 - 4 / 3 2 - 5 / 6 / A i ' ( x t )  2, o~ t is the creeping exponent, and mb is 
the number of reflections of orbit b from the disk in the fundamental 
domain. The summation for the windings mw gives the factor 
1/( 1 - exp[ 2n(ik - ~xl) a ] ). 

Table II. Creeping Cycle Data for the Three-Disk 
System with R : a = 6 "  

p, R~,ff/G L~/ .  L~, la 

12 6.000000 6.000000 4.188790 
12 5.656854 5.656854 3.821266 
13 6.000000 6.000000 2.094395 
13 5.656854 5.656854 3.821266 

121 58.167840 9.832159 4.523686 
121 58.787753 9.797958 3.544308 
131 58.167840 9.832159 2.429291 
131 58.787753 9.797958 3.544308 
123 66.352162 10.120809 4.384819 
123 73.492203 10.147842 3.478142 
132 84.855171 10.120809 2.678761 
132 73.492203 10.147842 3.478142 

The first column indicates the itinerary of the orbit, the 
second column the effective radius of the orbit calculated 
by means of the Sinai-Bunimovich curvatures, and the 
third and fourth columns the lengths of the free-flight and 
the creeping sections, respectively. 
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5. NUMERICAL RESULTS A N D  C O N C L U S I O N S  

To evaluate the results of the diffraction extended Gutzwiller-Voros 
spectral determinant, we compare the resonances determined by this to the 
resonances determined just from geometrical orbits and to the exact 
quantum resonances. 

The data are displayed in Fig. 2 and 3. As one can see, the Gutzwiller- 
Voros determinant accounts reasonably well for the leading order of 
resonances, whereas it fails for the next series. In Fig. 3, however, we can 
see that--when a few periodic creeping orbits are introduced--the results 
are qualitatively different, and represent much better the trend of the exact 
quantum resonance data. For instance, one can make a one-to-one 
identification of the quantum and semiclassical resonances, which is not 
possible in the purely geometrical theory, since in that approximation even 
the number of resonances is wrong. 

The series of subleading resonances also approximately defines the 
lower boundary of the region in which the diffractional spectral determinant 
still has a high accuracy and good convergence properties. This can also be 
seen from Fig. 3, since for small Re k and large negative Im k we have a 
relatively larger deviation between the exact and creeping resonances. 
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Fig. 2. The exact quantum mechanical resonances (diamonds) and the pure geometrical 
Gutzwiller-Voros resonances (crosses) in units of I/a in the complex k plane. The resonances 
belong to the one-dimensional A t representation of the three-disk system with R : a  = 6.  In the 
semiclassical calculation cycles up to topological length 4 have been used. The leading 
resonances close to the real axis are exactly described by the Gutzwiller-Voros resonances, 
whereas the subleading semiclassical resonances clearly deviate from the exact quantum 
resonances. 
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Fig. 3. The exact quan tum mechanical (diamonds)  and the semiclassical (crosses) A I 
resonances of the R:a = 6 three-disk system. The resonances are calculated by including dif- 
fractional creeping orbits up to order four in the GTD. As in the two-disk case, an improve- 
ment of the approximation is clearly visible, especially for the second row of the leading 
resonances as well as for the subleading diffractional ones. In the latter case the qualitative 
trend is clearly reproduced. As discussed above, the accuracy of the semiclassical resonances 
become worse in the region where Re k is small and lm k is large. 

The errors of the resonances originated from three sources. 

1. The description is semiclassical and therefore we use the Van 
Vleck propagator in (18) instead of the exact progrator, and the semiclassi- 
cal approximation of the creeping propagator in (5). In particular the poly- 
nomial terms in the Airy expansion of the creeping propagator give sizable 
corrections, as can be shown in the simpler one-disk and two-disk 
problemsJ 19, 2o) Also, only the l = I creeping modes are used. 

2. Only a restricted number of usual and creeping periodic orbits is 
avaliable instead of infinitely many. 

3. Even the cumulant expansion of the exact quantum mechanical 
scattering determinant is for large negative Im k very delicate as the single 
terms entering the cumulant expansion become individually large, t2~ As 
the periodic orbit expansion is just the semiclassical approximation to the 
cumulant expansion, t~4~ it cannot be expected that the periodic orbit 
expansion works better than this. In fact, as the individual contributions of 
the periodic orbits become larger with increasing negative Im k, and the 
individual errors from the semiclassical expansion are also increasing such 
that the total error can become sizable. In the simpler one-disk 119~ and two- 
disk ~2~ problems the contributions resulting from the higher polynomial 
terms in the Airy expansion of the creeping propagator move the sub- 
leading semiclassical resonances on top of their corresponding exact 
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quantum analogs to figure accuracy. In the three-disk case the correspond- 
ing calculation is plagued by the exponentially proliferating number of 
periodic orbits, but the hope is of course that the corresponding Airy 
correction terms could improve the subheading semiclassical resonances as 
well. 

As mentioned earlier, the number of creeping periodic orbits in this 
system increases exponentially with the topological length of the cycles. It 
would be natural to expect that this might destroy the simplicity of the 
semiclassical description. We conclude that this seems not to be the case. 
As we have demonstrated, one only needs the basic representatives of the 
creeping families to change the picture of the scattering resonances drasti- 
cally in the direction of the exact quantum resonances. 
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